Hashing is very popular for remote sensing image search. This article proposes a multiview hashing with learnable parameters to retrieve the queried images for a large-scale remote sensing dataset. Existing methods always neglect that real-world remote sensing data lies on a low-dimensional manifold embedded in high-dimensional ambient space. Unlike previous methods, this article proposes to learn the consensus compact codes in a view-specific low-dimensional subspace. Furthermore, we have added a hyperparameter learnable module to avoid complex parameter tuning. In order to prove the effectiveness of our method, we carried out experiments on three widely used remote sensing data sets and compared them with seven state-of-the-art methods. Extensive experiments show that the proposed method can achieve competitive results compared to the other method.
翻译:哈希是远程遥感图像搜索时很受欢迎的技术。本文提出了一种多视角哈希,用可学习参数来检索一个大规模的遥感数据集中的查询图像。现有的方法总是忽略实际远程遥感数据在高维环境空间中嵌入低维流形的事实。与以往方法不同的是,本文提出在特定视角的低维子空间中学习共识紧凑的哈希编码。此外,我们添加了一个可学习超参数模块,以避免复杂的参数调整。为证明我们的方法的有效性,我们在三个广泛使用的遥感数据集上进行了实验,并与七种最先进方法进行了比较。大量实验证明,与其他方法相比,所提出的方法可以取得竞争性的结果。