Avoiding the introduction of ghosts when synthesising LDR images as high dynamic range (HDR) images is a challenging task. Convolutional neural networks (CNNs) are effective for HDR ghost removal in general, but are challenging to deal with the LDR images if there are large movements or oversaturation/undersaturation. Existing dual-branch methods combining CNN and Transformer omit part of the information from non-reference images, while the features extracted by the CNN-based branch are bound to the kernel size with small receptive field, which are detrimental to the deblurring and the recovery of oversaturated/undersaturated regions. In this paper, we propose a novel hierarchical dual Transformer method for ghost-free HDR (HDT-HDR) images generation, which extracts global features and local features simultaneously. First, we use a CNN-based head with spatial attention mechanisms to extract features from all the LDR images. Second, the LDR features are delivered to the Hierarchical Dual Transformer (HDT). In each Dual Transformer (DT), the global features are extracted by the window-based Transformer, while the local details are extracted using the channel attention mechanism with deformable CNNs. Finally, the ghost free HDR image is obtained by dimensional mapping on the HDT output. Abundant experiments demonstrate that our HDT-HDR achieves the state-of-the-art performance among existing HDR ghost removal methods.
翻译:在合成低动态范围(LDR)图像作为高动态范围(HDR)图像但避免引入幽灵图像是一个具有挑战性的任务。卷积神经网络(CNN)通常能够有效地去除HDR中的幽灵图像,但如果存在大运动或过度饱和/欠饱和的情况,则LDR图像的处理具有挑战性。现有的将CNN和Transformer结合的双分支方法省略了来自非参考图像的部分信息,而基于CNN分支提取的特征受到具有小感受野卷积核的限制,这对去模糊和恢复过度饱和/欠饱和区域是不利的。本文提出了一种新的层次双Transformer方法用于无幽灵HDR(HDT-HDR)图像生成,它同时提取全局特征和本地特征。首先,我们使用具有空间注意机制的基于CNN的头从所有LDR图像中提取特征。其次,将LDR特征交付给分层双Transformer(HDT)。在每个双Transformer(DT)中,基于窗口的Transformer提取全局特征,同时使用具有形变CNN的通道注意机制提取局部细节。最后,通过HDT输出上的维度映射获得无幽灵HDR图像。丰富的实验表明,我们的HDT-HDR在现有HDR幽灵去除方法中实现了最先进的性能。