The semantic segmentation of point clouds is an important part of the environment perception for robots. However, it is difficult to directly adopt the traditional 3D convolution kernel to extract features from raw 3D point clouds because of the unstructured property of point clouds. In this paper, a spherical interpolated convolution operator is proposed to replace the traditional grid-shaped 3D convolution operator. This newly proposed feature extraction operator improves the accuracy of the network and reduces the parameters of the network. In addition, this paper analyzes the defect of point cloud interpolation methods based on the distance as the interpolation weight and proposes the self-learned distance-feature density by combining the distance and the feature correlation. The proposed method makes the feature extraction of spherical interpolated convolution network more rational and effective. The effectiveness of the proposed network is demonstrated on the 3D semantic segmentation task of point clouds. Experiments show that the proposed method achieves good performance on the ScanNet dataset and Paris-Lille-3D dataset.


翻译:点云的语义分解是机器人环境认知的一个重要部分。 但是,由于点云的无结构属性,很难直接采用传统的 3D 3D 进化内核来从原始的 3D 点云中提取特征。 在本文中,提议用一个球形间集变操作器来取代传统的 3D 进化电网形 3D 进化操作器。这个新提议的地物提取操作器提高了网络的准确性,并减少了网络的参数。 此外,本文件还分析了基于作为内推重量的距离的点云内分解方法的缺陷,并结合了距离和特征的关联性,提出了自学的距离-速度密度。拟议的方法使球形间集变电网络的特征提取更加合理和有效。 拟议的网络的有效性在点云的 3D 语义分解任务上得到了证明。 实验显示,拟议的方法在扫描网数据集和巴黎- 里尔-3D 数据集上取得了良好的性能。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员