In this paper, we propose a novel fully convolutional two-stream fusion network (FCTSFN) for interactive image segmentation. The proposed network includes two sub-networks: a two-stream late fusion network (TSLFN) that predicts the foreground at a reduced resolution, and a multi-scale refining network (MSRN) that refines the foreground at full resolution. The TSLFN includes two distinct deep streams followed by a fusion network. The intuition is that, since user interactions are more direction information on foreground/background than the image itself, the two-stream structure of the TSLFN reduces the number of layers between the pure user interaction features and the network output, allowing the user interactions to have a more direct impact on the segmentation result. The MSRN fuses the features from different layers of TSLFN with different scales, in order to seek the local to global information on the foreground to refine the segmentation result at full resolution. We conduct comprehensive experiments on four benchmark datasets. The results show that the proposed network achieves competitive performance compared to current state-of-the-art interactive image segmentation methods.


翻译:在本文中,我们提出一个新的全演双流融合网络(FATSFNF),用于互动图像分割。拟议网络包括两个子网络:一个双流后流融合网络(TSLFN),用于以降低分辨率预测前景,另一个多规模的精炼网络(MSRN),用于以完全分辨率改进前景。TSLFN包括两个截然不同的深层流,然后是一个融合网络。直觉是,由于用户互动比图像本身更能指导地表/背地的信息,TSLFF的双流结构减少了纯用户互动特征和网络输出之间的层层数,使用户互动能够对分解结果产生更直接的影响。MSRN将TSLFF的不同层的特征与不同尺度结合起来,以寻找关于地面的本地到全球信息,以完全分辨率改进分解结果。我们在四个基准数据集上进行了全面试验。结果显示,拟议的网络取得了与当前状态互动图像分割方法相比的竞争性性表现。

5
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
109+阅读 · 2020年3月12日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
一文带你读懂 SegNet(语义分割)
AI研习社
19+阅读 · 2019年3月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关资讯
一文带你读懂 SegNet(语义分割)
AI研习社
19+阅读 · 2019年3月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员