In this paper, we propose a novel generative adversarial network (GAN) for 3D point clouds generation, which is called tree-GAN. To achieve state-of-the-art performance for multi-class 3D point cloud generation, a tree-structured graph convolution network (TreeGCN) is introduced as a generator for tree-GAN. Because TreeGCN performs graph convolutions within a tree, it can use ancestor information to boost the representation power for features. To evaluate GANs for 3D point clouds accurately, we develop a novel evaluation metric called Frechet point cloud distance (FPD). Experimental results demonstrate that the proposed tree-GAN outperforms state-of-the-art GANs in terms of both conventional metrics and FPD, and can generate point clouds for different semantic parts without prior knowledge.


翻译:在本文中,我们提议为3D点云生成建立一个新型的基因对抗网络(GAN),称为树-GAN。为了实现多级 3D点云生成的最先进性能,引入了树结构图图变形网络(TreeGCN)作为树-GAN的生成器。由于树GCN在树内进行图变,它可以使用祖先信息来提高地貌的表示力。为了准确评估3D点云的表示力,我们开发了一个新的评估指标,称为Frechet点云距离(FPD)。实验结果表明,拟议的树-GAN在常规的参数和FPD方面都优于艺术的GAN状态,并且可以在没有事先知识的情况下为不同语系部分生成点云。

5
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
4+阅读 · 2018年9月25日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员