In this paper, we propose a novel generative adversarial network (GAN) for 3D point clouds generation, which is called tree-GAN. To achieve state-of-the-art performance for multi-class 3D point cloud generation, a tree-structured graph convolution network (TreeGCN) is introduced as a generator for tree-GAN. Because TreeGCN performs graph convolutions within a tree, it can use ancestor information to boost the representation power for features. To evaluate GANs for 3D point clouds accurately, we develop a novel evaluation metric called Frechet point cloud distance (FPD). Experimental results demonstrate that the proposed tree-GAN outperforms state-of-the-art GANs in terms of both conventional metrics and FPD, and can generate point clouds for different semantic parts without prior knowledge.
翻译:在本文中,我们提议为3D点云生成建立一个新型的基因对抗网络(GAN),称为树-GAN。为了实现多级 3D点云生成的最先进性能,引入了树结构图图变形网络(TreeGCN)作为树-GAN的生成器。由于树GCN在树内进行图变,它可以使用祖先信息来提高地貌的表示力。为了准确评估3D点云的表示力,我们开发了一个新的评估指标,称为Frechet点云距离(FPD)。实验结果表明,拟议的树-GAN在常规的参数和FPD方面都优于艺术的GAN状态,并且可以在没有事先知识的情况下为不同语系部分生成点云。