Given a set of discrete probability distributions, the minimum entropy coupling is the minimum entropy joint distribution that has the input distributions as its marginals. This has immediate relevance to tasks such as entropic causal inference for causal graph discovery and bounding mutual information between variables that we observe separately. Since finding the minimum entropy coupling is NP-Hard, various works have studied approximation algorithms. The work of [Compton, ISIT 2022] shows that the greedy coupling algorithm of [Kocaoglu et al., AAAI 2017] is always within $log_2(e) \approx 1.44$ bits of the optimal coupling. Moreover, they show that it is impossible to obtain a better approximation guarantee using the majorization lower-bound that all prior works have used: thus establishing a majorization barrier. In this work, we break the majorization barrier by designing a stronger lower-bound that we call the profile method. Using this profile method, we are able to show that the greedy algorithm is always within $log_2(e)/e \approx 0.53$ bits of optimal for coupling two distributions (previous best-known bound is within 1 bit), and within $(1 + log_2(e))/2 \approx 1.22$ bits for coupling any number of distributions (previous best-known bound is within 1.44 bits). We also examine a generalization of the minimum entropy coupling problem: Concave Minimum-Cost Couplings. We are able to obtain similar guarantees for this generalization in terms of the concave cost function. Additionally, we make progress on the open problem of [Kova\v{c}evi\'c et al., Inf. Comput. 2015] regarding NP membership of the minimum entropy coupling problem by showing that any hardness of minimum entropy coupling beyond NP comes from the difficulty of computing arithmetic in the complexity class NP. Finally, we present exponential-time algorithms for computing the exactly optimal solution.


翻译:根据一套离散概率分布值 { 离散概率分布值, 最小的联结值是最小的联运算法, 其输入分布值是最小的联运。 这与下列任务直接相关: 用于因果图形发现和我们分别观察的变量之间的相互信息。 由于找到最小的联结值是NP- Hard, 各种作品都研究了近似算法。 [Compton, ISIT 2022] 的工作显示, [Kocaoglu 等人, AAAI 2017] 的贪婪联运算法总是在 $log_ e) (Approx 1. 44美元 的最小联运分配值) 。 此外, 它们表明, 无法利用所有先前作品所使用的主要化下限获得更好的近端保障 : 从而建立一个主要连接屏障 。 我们通过配置一个更低调的配置数据方法来打破主要障碍。 使用这个配置方法, 我们能够显示贪婪的算法总是在 $log_ e) (e) / appreal adrox more more more more more more more more more mess yalal yal deal deal deal 。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年10月20日
Arxiv
17+阅读 · 2022年1月11日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员