项目名称: 非负矩阵张量积保持问题的研究
项目编号: No.11426075
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 姚红梅
作者单位: 哈尔滨工程大学
项目金额: 3万元
中文摘要: 本项目以量子信息科学为背景,结合具有重要应用价值的谱理论与数值域理论,拟开展非负矩阵张量积的谱及谱半径保持与数值域及数值半径保持问题的研究,具体给出保持非负矩阵张量积的谱、谱半径、数值域及数值半径线性映射的形式,旨在进一步丰富谱保持及数值域保持理论。在此基础上,探索其在量子纠缠态信息传输中的实际应用价值。本项目的主要工作在于将埃尔米特矩阵张量积的谱及谱半径保持与一般矩阵张量积的数值域及数值半径保持理论推广到非负矩阵张量积的谱、谱半径、数值域及数值半径保持理论。
中文关键词: 保持问题;张量乘积;张量特征值;符号模式张量;
英文摘要: In the context of quantum information science, the purpose of this project is to study spectrum preserver and numerical range preserver of tensor products of nonnegative matrices and give the forms of linear maps preserving spectrum, spectral radius of tensor products of nonnegative matrices and the forms of linear maps preserving numerical range, numerical radius of tensor products of nonnegative matrices, which mainly combines with spectrum theory and numerical range theory that have important applications. This project will further enrich the spectrum preservers and the numerical range preservers. On this basis, the practical value will be explored in the information transmission of quantum entangled states. The main task of this project is to generalize the spectrum,spectral radius preservers of tensor products of Hermitian matrices and the numerical range, numerical radius preservers of matrices to corresponding preservers of tensor products of nonnegative matrices.
英文关键词: preserving problem;tensor product;tensor eigenvalue;sign pattern tensor;