We consider a space-time fractional parabolic problem. Combining a sinc-quadrature based method for discretizing the Riesz-Dunford integral with $hp$-FEM in space yields an exponentially convergent scheme for the initial boundary value problem with homogeneous right-hand side. For the inhomogeneous problem, an $hp$-quadrature scheme is implemented. We rigorously prove exponential convergence with focus on small times $t$, proving robustness with respect to startup singularities due to data incompatibilities.
翻译:我们考虑的是时空的片面抛物线问题。 将基于正弦方形的Riesz- Dunford元件与空间中的$hp$-FEM 分离的方法结合起来,可以产生一个指数化的初始边界值问题集成计划,其右侧是同质的。 对于不相容的问题,我们实施了$hp$-quadrature 计划。 我们严格证明指数性趋同,重点是小倍的美元,证明了由于数据不兼容性而对启动奇点的稳健性。