We study the stochastic $p$-Laplace system in a bounded domain. We propose two new space-time discretizations based on the approximation of time-averaged values. We establish linear convergence in space and $1/2$ convergence in time. Additionally, we provide a sampling algorithm to construct the necessary random input in an efficient way. The theoretical error analysis is complemented by numerical experiments.
翻译:我们在一个封闭的域内研究Stochacistic $p$-Laplace系统。 我们根据时间平均值的近似值提出两个新的时空分解法。 我们建立了空间线性趋同和1/2美元时间趋同。 此外, 我们提供了一个抽样算法, 以高效的方式构建必要的随机输入。 理论错误分析得到了数字实验的补充。