Quantifying uncertainty is a key stage in autonomous robotic exploration, since it allows to identify the most informative actions to execute. However, dealing with full Fisher Information matrices (FIM) is computationally heavy and may become intractable for online systems. In this work, we study the paradigm of Active graph SLAM formulated over $\textit{SE(n)}$, and propose a general relationship between the full FIM and the Laplacian matrix of the underlying pose-graph. Therefore, the optimal set of actions can be estimated by maximizing optimality criteria of the weighted Laplacian instead of that of the FIM. Experimental validation proves our method leads to equivalent results in a fraction of the time traditional methods require. Based on the former, we present an online Active graph SLAM system capable of selecting D-optimal actions and that outperforms other state-of-the-art methods that rely on slower computations. Also, we propose the use of such indices as stopping criterion, making our system capable of autonomously determining when the exploration strategy is no longer adding information to the graph SLAM algorithm and it should be either changed or terminated.
翻译:量化不确定性是自主机器人探索的关键阶段,因为它能够确定需要执行的最丰富行动。然而,处理完整的渔业信息矩阵(FIM)的计算十分繁重,可能对在线系统造成难以解决。在这项工作中,我们研究了以$\textit{SE(n)}$制成的主动图形SLAM的范式,并提出了完整FIM和基础面貌的拉普拉西亚矩阵之间的一般关系。因此,最佳的行动组合可以通过最大限度地提高加权拉普拉提安的最佳标准而不是FIM的最佳标准来估计。实验性验证证明我们的方法导致在传统方法要求的一小部分时间里取得等效的结果。基于前者,我们提出了一个在线主动图形SLAM系统,能够选择D-最佳行动,并且比其他依靠较慢的计算方法更完美。此外,我们建议使用这类指数作为停止标准,使我们的系统能够自主地确定勘探战略何时不再将信息添加到SLAM算法中,并且应当加以修改或终止。