This study debuts a new spline dimensional decomposition (SDD) for uncertainty quantification analysis of high-dimensional functions, including those endowed with high nonlinearity and nonsmoothness, if they exist, in a proficient manner. The decomposition creates an hierarchical expansion for an output random variable of interest with respect to measure-consistent orthonormalized basis splines (B-splines) in independent input random variables. A dimensionwise decomposition of a spline space into orthogonal subspaces, each spanned by a reduced set of such orthonormal splines, results in SDD. Exploiting the modulus of smoothness, the SDD approximation is shown to converge in mean-square to the correct limit. The computational complexity of the SDD method is polynomial, as opposed to exponential, thus alleviating the curse of dimensionality to the extent possible. Analytical formulae are proposed to calculate the second-moment properties of a truncated SDD approximation for a general output random variable in terms of the expansion coefficients involved. Numerical results indicate that a low-order SDD approximation of nonsmooth functions calculates the probabilistic characteristics of an output variable with an accuracy matching or surpassing those obtained by high-order approximations from several existing methods. Finally, a 34-dimensional random eigenvalue analysis demonstrates the utility of SDD in solving practical problems.


翻译:此项研究以精巧的方式为高维功能,包括具有高度非线性和非摩擦性(如果存在的话)功能的不确定性量化分析,解析为独立输入随机变量中与测量一致性或正统性基样条纹(B-SPlines)相关的产出随机变量创造了等级扩展。将一个样状空间的尺寸分解到或交替的子空间,每个样状空间都由一组减少的这种或超异性样样样样样样的样条跨越。SDD(如果存在的话)将光滑度的模版进行演算,显示SDD的近似会以平均值方形趋同正确限度。SDD方法的计算复杂性是多元的,而不是指数化的,从而将维度的诅咒降低到可能的程度。 提出分析公式是为了计算调整的SDDM近似的第二个动作特性,用以计算以扩展性比值一般的随机性变异性变量变量变量变量变量变量变量变量变量变数,在扩展性精度的精确度分析中将SDDDRM 的数级现有直观性比值的计算出来。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
105+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年11月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年11月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员