Active inference is a unifying theory for perception and action resting upon the idea that the brain maintains an internal model of the world by minimizing free energy. From a behavioral perspective, active inference agents can be seen as self-evidencing beings that act to fulfill their optimistic predictions, namely preferred outcomes or goals. In contrast, reinforcement learning requires human-designed rewards to accomplish any desired outcome. Although active inference could provide a more natural self-supervised objective for control, its applicability has been limited because of the shortcomings in scaling the approach to complex environments. In this work, we propose a contrastive objective for active inference that strongly reduces the computational burden in learning the agent's generative model and planning future actions. Our method performs notably better than likelihood-based active inference in image-based tasks, while also being computationally cheaper and easier to train. We compare to reinforcement learning agents that have access to human-designed reward functions, showing that our approach closely matches their performance. Finally, we also show that contrastive methods perform significantly better in the case of distractors in the environment and that our method is able to generalize goals to variations in the background.
翻译:活跃的推论是认识和行动的统一理论,其依据是大脑通过尽量减少自由能源来维持世界内部模式的理念。从行为角度看,积极的推论剂可被视为自我证明,证明那些采取行动实现乐观预测的人,即优选结果或目标。相反,强化学习需要人为设计的奖励来实现任何预期结果。虽然积极的推论可以提供更自然的自我监督的控制目标,但其适用性却有限,原因是在向复杂环境推广方法方面存在着缺陷。在这项工作中,我们提出了一个积极推论的目标,即积极推论在学习代理人的基因模型和规划未来行动方面大大减轻计算负担。我们的方法比基于图像的任务中基于可能性的积极推论要好得多,同时也计算得更便宜和容易培训。我们比较了能够利用人类设计的奖励功能的学习剂,表明我们的方法与它们的表现非常接近。最后,我们还表明,对比方法在环境的分流器方面效果要好得多,而且我们的方法能够概括背景上的变化目标。