Any experiment with climate models relies on a potentially large set of spatio-temporal boundary conditions. These can represent both the initial state of the system and/or forcings driving the model output throughout the experiment. Whilst these boundary conditions are typically fixed using available reconstructions in climate modelling studies, they are highly uncertain, that uncertainty is unquantified, and the effect on the output of the experiment can be considerable. We develop efficient quantification of these uncertainties that combines relevant data from multiple models and observations. Starting from the coexchangeability model, we develop a coexchangable process model to capture multiple correlated spatio-temporal fields of variables. We demonstrate that further exchangeability judgements over the parameters within this representation lead to a Bayes linear analogy of a hierarchical model. We use the framework to provide a joint reconstruction of sea-surface temperature and sea-ice concentration boundary conditions at the last glacial maximum (19-23 ka) and use it to force an ensemble of ice-sheet simulations using the FAMOUS-Ice coupled atmosphere and ice-sheet model. We demonstrate that existing boundary conditions typically used in these experiments are implausible given our uncertainties and demonstrate the impact of using more plausible boundary conditions on ice-sheet simulation.
翻译:气候模型的任何实验都依赖于一系列潜在的巨大的时空边界条件。 这可能代表系统的初始状态和(或)驱动整个实验中模型输出的强制力。 虽然这些边界条件通常是使用气候建模研究中的现有重建来固定的, 但它们非常不确定, 不确定因素是无法量化的, 对实验产出的影响可能相当大。 我们对这些不确定因素进行了有效的量化, 将多个模型和观测的相关数据结合起来。 从可互换模型开始, 我们开发了一个可共变进程模型, 以捕捉多个相关变数的时空领域。 我们证明, 对这一模型中参数的进一步互换性判断导致一种等级模型的贝斯线性类比。 我们利用这个框架在最后冰川最高点( 19-23 ka) 提供海表温度和海冰浓度边界条件的联合重建, 并用它强制使用一个使用FAMUSI-Ice并存的大气和冰表模型进行冰层模拟。 我们证明,这些实验中通常使用的边界条件是无法令人相信的。