We consider the problem of uncertainty quantification for an unknown low-rank matrix $\mathbf{X}$, given a partial and noisy observation of its entries. This quantification of uncertainty is essential for many real-world problems, including image processing, satellite imaging, and seismology, providing a principled framework for validating scientific conclusions and guiding decision-making. However, existing literature has mainly focused on the completion (i.e., point estimation) of the matrix $\mathbf{X}$, with little work on investigating its uncertainty. To this end, we propose in this work a new Bayesian modeling framework, called BayeSMG, which parametrizes the unknown $\mathbf{X}$ via its underlying row and column subspaces. This Bayesian subspace parametrization enables efficient posterior inference on matrix subspaces, which represents interpretable phenomena in many applications. This can then be leveraged for improved matrix recovery. We demonstrate the effectiveness of BayeSMG over existing Bayesian matrix recovery methods in numerical experiments, image inpainting, and a seismic sensor network application.
翻译:我们认为,鉴于对一个未知的低级基质 $\ mathbf{X} 进行局部和紧张的观察,对一个未知的低级基质 $\ mathbf{X} 的不确定性进行量化的问题。这种不确定性的量化对于许多现实世界问题至关重要,包括图像处理、卫星成像和地震学,为验证科学结论和指导决策提供了一个原则框架。然而,现有文献主要侧重于矩阵 $\ mathbf{X} 的完成(即点估测),而调查其不确定性的工作很少。为此,我们提议在这项工作中建立一个新的巴伊西亚模型框架,称为BayesMG, 通过其底行和柱子次空间对未知的美元进行假称。巴伊西亚次空间的分空化使得在矩阵子空间上高效的后推力,这在许多应用中代表了可解释的现象。然后可以用来改进矩阵的恢复。我们展示了巴伊斯MG在数字实验、图像油漆和地震感官网络应用中相对于现有的巴伊基质矩阵恢复方法的有效性。