Graph convolutional networks have been widely used for skeleton-based action recognition due to their excellent modeling ability of non-Euclidean data. As the graph convolution is a local operation, it can only utilize the short-range joint dependencies and short-term trajectory but fails to directly model the distant joints relations and long-range temporal information that are vital to distinguishing various actions. To solve this problem, we present a multi-scale spatial graph convolution (MS-GC) module and a multi-scale temporal graph convolution (MT-GC) module to enrich the receptive field of the model in spatial and temporal dimensions. Concretely, the MS-GC and MT-GC modules decompose the corresponding local graph convolution into a set of sub-graph convolution, forming a hierarchical residual architecture. Without introducing additional parameters, the features will be processed with a series of sub-graph convolutions, and each node could complete multiple spatial and temporal aggregations with its neighborhoods. The final equivalent receptive field is accordingly enlarged, which is capable of capturing both short- and long-range dependencies in spatial and temporal domains. By coupling these two modules as a basic block, we further propose a multi-scale spatial temporal graph convolutional network (MST-GCN), which stacks multiple blocks to learn effective motion representations for action recognition. The proposed MST-GCN achieves remarkable performance on three challenging benchmark datasets, NTU RGB+D, NTU-120 RGB+D and Kinetics-Skeleton, for skeleton-based action recognition.


翻译:由于图形变异是一种局部操作,它只能使用短距离联合依赖和短期轨迹,但未能直接模拟对区分各种行动至关重要的远距离联合关系和长距离时间信息。为了解决这个问题,我们提出了一个多尺度空间图变动模块(MS-GC)和一个多尺度时间图变迁模块(MT-GC),以丰富该模型在空间和时间层面的可接受领域。具体地说,MS-GC和MT-GC模块将相应的本地图变异转换成一套子图变异,形成一个等级残余结构。如果不引入额外的参数,这些特征将随着一系列子图变异(MS-GC)处理,而每个节将完成与其周边的多个空间和时间群集。因此,最终等值的图像变异(MT-GC)模块将扩大,从而能够捕捉空间和时空层面的可容模型的可容领域。具体地,MS-GC和M-GC模块将相应的本地图变异变变变变变变变变变变变组合成一组。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年2月4日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年8月12日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
13+阅读 · 2019年11月14日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年2月4日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员