Continuous Sign Language Recognition (CSLR) is a challenging research task due to the lack of accurate annotation on the temporal sequence of sign language data. The recent popular usage is a hybrid model based on "CNN + RNN" for CSLR. However, when extracting temporal features in these works, most of the methods using a fixed temporal receptive field and cannot extract the temporal features well for each sign language word. In order to obtain more accurate temporal features, this paper proposes a multi-scale temporal network (MSTNet). The network mainly consists of three parts. The Resnet and two fully connected (FC) layers constitute the frame-wise feature extraction part. The time-wise feature extraction part performs temporal feature learning by first extracting temporal receptive field features of different scales using the proposed multi-scale temporal block (MST-block) to improve the temporal modeling capability, and then further encoding the temporal features of different scales by the transformers module to obtain more accurate temporal features. Finally, the proposed multi-level Connectionist Temporal Classification (CTC) loss part is used for training to obtain recognition results. The multi-level CTC loss enables better learning and updating of the shallow network parameters in CNN, and the method has no parameter increase and can be flexibly embedded in other models. Experimental results on two publicly available datasets demonstrate that our method can effectively extract sign language features in an end-to-end manner without any prior knowledge, improving the accuracy of CSLR and achieving competitive results.
翻译:由于手语数据的时间序列缺乏准确的说明,持续手语识别(CSLR)是一项具有挑战性的研究任务。最近流行使用的是一种基于 CSLR 的“CNN + RNN” 的混合模型。然而,当在这些作品中提取时间特征时,大多数方法使用固定时间可接受字段,无法为每个手语单词提取时间特征。为了获得更准确的时间特征,本文件建议建立一个多尺度的时间网络(MSTNet)。网络主要由三个部分组成。Resnet和两个完全连接的(FC)层构成框架性特征提取部分。时间智能特征提取部分通过首先提取不同尺度的时间可接受字段特征学习时间特征,先使用拟议的多尺度时间可接受域块(MST 区块)来改进时间模型能力,然后进一步整合不同尺度的时间特征。为了获得更准确的时间特征,拟议中的多级别连接时间分类(CTC)损失部分用于培训,以获得识别结果。多层次的CTC级特征提取功能提取部分通过首先提取时间提取时间功能提取时间功能来进行时间特征学习和更新不同尺度,在IMISLS 之前的实验性定位模型中不能有效展示,在S 级上改进任何可选取数据模型中采用的任何方法,在S 。在S 改进任何前实验性定位模型中可以改进其他方法,在S 改进任何可复制的模型中可以改进任何可选取制模方法。