To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.


翻译:为了提供更准确、多样和可解释的建议,必须超越对用户-项目互动的模型,并将侧边信息考虑在内。 保理机( FM) 等传统方法将它描绘成一个受监督的学习问题, 它将每种互动都视为与侧面信息编码的独立实例。 由于忽略了事件或项目之间的关系( 例如, 电影导演也是另一部电影的演员), 这些方法不足以提取用户集体行为中的协作信号。 在这项工作中, 我们调查将项目与属性连接, 打破独立互动假设的知识图( KG) 的效用。 我们争辩说, 在KG和用户项目图的混合结构中, 高阶关系 -- -- 将两个项目与一个或多个链接的属性连接起来 -- -- 是成功推荐的基本要素。 我们提出了名为“ 知识图表关注网络( KGAT 网络) 的新方法, 明确模拟基于用户集体行为模式的高度模式模式模式。 以端对端对端到端机制的模型。 它反复将嵌入的嵌入方式从一个节点邻居( 它可以是用户、 内嵌路、 校) 直观、 直观、 直观、 KG 直观、 直观 直观 直观的K- 直观地将 KAT 直方关系, 直方关系到直方关系, 直方( 直方) 直方) 直观地) 根根根根根根根根根根根根根根根根根根根根根根根根根根根关系, 直基项目、 直根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根基根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根基根基根基根根根根根根根根根根根基根基根基根基根基根基根基根基根基根基根基

40
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
170+阅读 · 2020年2月13日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
13+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
Top
微信扫码咨询专知VIP会员