Automated AI classifiers should be able to defer the prediction to a human decision maker to ensure more accurate predictions. In this work, we jointly train a classifier with a rejector, which decides on each data point whether the classifier or the human should predict. We show that prior approaches can fail to find a human-AI system with low misclassification error even when there exists a linear classifier and rejector that have zero error (the realizable setting). We prove that obtaining a linear pair with low error is NP-hard even when the problem is realizable. To complement this negative result, we give a mixed-integer-linear-programming (MILP) formulation that can optimally solve the problem in the linear setting. However, the MILP only scales to moderately-sized problems. Therefore, we provide a novel surrogate loss function that is realizable-consistent and performs well empirically. We test our approaches on a comprehensive set of datasets and compare to a wide range of baselines.
翻译:自动化的 AI 分类器应该能够将预测推迟到人类决策者那里, 以确保更准确的预测。 在这项工作中, 我们联合训练一个分类师与一个拒绝者, 该拒绝者决定每个数据点是分类师还是人应该预测。 我们表明, 先前的方法可能找不到一个人类- AI 系统, 其分类错误低, 即使存在线性分类师和拒绝者, 其分类错误为零( 可实现的环境) 。 我们证明, 获得一个低误差的线性对子是硬的, 即使问题可以实现。 为了补充这一负面结果, 我们给出了一个混合的整数线性线性方案( MILP) 配方, 能够最好地解决线性环境中的问题。 然而, MILP 只能对中度问题进行比例。 因此, 我们提供了一个新的可实现一致并进行良好实验的隐含损失功能。 我们用一套全面的数据集测试我们的方法, 并比较广泛的基线 。