We present a learning-based approach to relight a single image of Lambertian and low-frequency specular objects. Our method enables inserting objects from photographs into new scenes and relighting them under the new environment lighting, which is essential for AR applications. To relight the object, we solve both inverse rendering and re-rendering. To resolve the ill-posed inverse rendering, we propose a weakly-supervised method by a low-rank constraint. To facilitate the weakly-supervised training, we contribute Relit, a large-scale (750K images) dataset of videos with aligned objects under changing illuminations. For re-rendering, we propose a differentiable specular rendering layer to render low-frequency non-Lambertian materials under various illuminations of spherical harmonics. The whole pipeline is end-to-end and efficient, allowing for a mobile app implementation of AR object insertion. Extensive evaluations demonstrate that our method achieves state-of-the-art performance. Project page: https://renjiaoyi.github.io/relighting/.
翻译:我们提出了一种基于学习的方法,用于补光Lambert和低频高光面的单个图像。我们的方法使得将摄影中的物体插入到新场景并在新环境照明下重新照明成为可能,这对于AR应用程序非常重要。为了重新照明物体,我们解决了反演渲染和重新渲染两个问题。为了解决不适定的反演渲染,我们提出了一种低秩约束的弱监督方法。为了便于弱监督训练,我们贡献了Relit,一个大规模(750K张图像)的视频数据集,其中包含在变化的照明下对齐的物体。对于重新渲染,我们提出了一个可微分的高光渲染层,以在球面谐波的各种照明下渲染低频非Lambertian材料。整个流程是端到端和高效的,可以实现移动应用程序实现AR对象插入。广泛的评估表明,我们的方法实现了最先进的性能。项目页面:https://renjiaoyi.github.io/relighting/。