项目名称: 流形上整体几何与几何分析的若干研究
项目编号: No.11201416
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 赵恩涛
作者单位: 浙江大学
项目金额: 22万元
中文摘要: 系统地运用整体几何与几何分析的现代方法,深入研究Ricci流在曲率积分拼挤条件下的收敛性及其在曲率与拓扑中的应用;研究任意余维平均曲率流和保体积平均曲率流在曲率积分拼挤条件下的收敛性及其在曲率与拓扑和广义相对论中的应用;研讨空间形式中任意余维平均曲率流在最佳逐点曲率拼挤条件下的收敛性;研究黎曼流形在曲率限制条件下几何结构、拓扑结构、微分结构的唯一性及拓扑有限性;建立流形的几何量、分析量与拓扑量之间的关系式,探寻Laplace-Beltrami算子特征值上、下界的优化估计和流形上Schr?dinger算子的基本间隙估计;研究特征值对流形的几何、拓扑性质的影响,在特征值拼挤条件下探讨流形拓扑结构的唯一性;推进球面中极小超曲面的关于Laplace-Beltrami算子第一特征值的丘成桐猜想和关于数量曲率拼挤区间的陈省身猜想的研究。本课题属国际前沿,在许多领域有重要应用。
中文关键词: 黎曼流形;几何热流;曲率与拓扑;几何刚性;特征值
英文摘要: By systematically applying modern methods in global geometry and geometric analysis, we aim to study the convergence of the Ricci flow under integral curvature pinching condition and discuss its application in the study of the curvature and topology; to study the convergence of the mean curvature flow of arbitrary codimension and the volume-preserving mean curvature flow under integral curvature pinching condition and discuss the application in the study of the curvature and topology, and general relativity; to study the convergence of the mean curvature flow of arbitrary codimension in space forms under optimal pointwise curvature pinching condition; to study the uniqueness of geometric, topological, differentiable structures and the finiteness of topological structures on Riemannian manifolds with special restriction on the curvature; to find the relationship between geometric, analytic and topological invariants of the manifolds, obtain better estimates for the upper and lower bounds on the eigenvalues of the Laplace-Beltrami operator and give an estimate for the fundamental gap of the Schr?dinger operator on manifolds; to investigate the influence of eigenvalues on the geometric structure and topological property of manifolds and discuss the uniqueness of topological structures on manifolds under the eigenva
英文关键词: Riemannian manifold;geometric heat flow;curvature and topology;geometric rigidity;eigenvalue