项目名称: 基于空间-分数谱域联合稀疏表示的SAR图像目标识别

项目编号: No.41301460

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 天文学、地球科学

项目作者: 何艳敏

作者单位: 电子科技大学

项目金额: 25万元

中文摘要: 在稀疏逼近和压缩感知理论基础上,研究合成孔径雷达(Synthetic Aperture Radar,SAR)图像特征提取和自动目标识别的新方法。本项目的重要创新点:针对低分辨率、低信噪比的微弱SAR地面目标检测识别困难的问题,首次将分数谱分析引入到SAR的特征提取和目标识别中;用联合稀疏表示的方法将SAR空域与分数谱域特征进行融合,在挖掘其相关性的基础上提高表示的准确性和有效性;针对现有SAR稀疏字典不具备辨别性,且信号表示能力受噪声影响等问题,将提高辨别能力、去除噪声、可压缩等目标融合到字典训练中,得到一个集表示性、辨别性、噪声抑制性及可压缩性为一体的特征字典。在此基础上,提出联合稀疏分解和识别的方法,在提高识别准确率的同时增强对目标特性(如方位角、姿态)及噪声等因素变化的鲁棒性。本项目着眼于现代信号处理的新理论和方法研究,有望取得具有国际先进水平的学术和科研成果。

中文关键词: 合成孔径雷达;稀疏表示;分数谱分析;目标识别;

英文摘要: Based on the theory of sparse approximation and compressive sensing,this project addresses the issues of feature extraction and automatic target recognition (ATR) for synthetic aperture radar(SAR)images. The main contributions are: To meet the challenge of the recognition of low-resolution, low-SNR targets, the fractional frequency analysis is introduced into the SAR feature extraction and recognition for the first time.To fuse the features in spatial and frequency domains and achieve an accurate and effective feature representations, a joint sparse representation method is proposed. The classification performances of exsiting sparse dictionaries for SAR ATR are not satisfactory due to the lack of discrimination and robustness to noise. To overcome this problem,the goals of providing discrimination,noise reduction as well as compression are corporated into the objective of dictionary training.A new training model is proposed to learn simultaneously reconstructive,discriminative and compressive as well as noise-robust dictionaries. Based on this,a joint sparse coding and classification method is proposed to improve the classification accuracy and robustness to environmental variations. This project focuses on the innovative theory and methods of modern signal processing and has a good prospect with significant sc

英文关键词: Synthetic Aperture Radar;sparse representation;spectrum analysis of fractional order;target recognization;

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】基于鲁棒区域特征生成的零样本目标检测
专知会员服务
10+阅读 · 2022年3月22日
基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
28+阅读 · 2021年11月8日
专知会员服务
20+阅读 · 2021年7月28日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
69+阅读 · 2021年3月23日
专知会员服务
33+阅读 · 2021年2月7日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述 | 图像目标检测
计算机视觉life
31+阅读 · 2019年6月24日
读者来稿 | 有效遮挡检测的鲁棒人脸识别
计算机视觉战队
19+阅读 · 2019年3月28日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
干货 | 目标识别算法的进展
计算机视觉战队
17+阅读 · 2017年6月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
19+阅读 · 2018年5月17日
小贴士
相关VIP内容
【CVPR2022】基于鲁棒区域特征生成的零样本目标检测
专知会员服务
10+阅读 · 2022年3月22日
基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
28+阅读 · 2021年11月8日
专知会员服务
20+阅读 · 2021年7月28日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
69+阅读 · 2021年3月23日
专知会员服务
33+阅读 · 2021年2月7日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
相关资讯
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述 | 图像目标检测
计算机视觉life
31+阅读 · 2019年6月24日
读者来稿 | 有效遮挡检测的鲁棒人脸识别
计算机视觉战队
19+阅读 · 2019年3月28日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
干货 | 目标识别算法的进展
计算机视觉战队
17+阅读 · 2017年6月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员