In this work, the goal is to estimate the abundance of an animal population using data coming from capture-recapture surveys. We leverage the prior knowledge about the population's structure to specify a parsimonious finite mixture model tailored to its behavioral pattern. Inference is carried out under the Bayesian framework, where we discuss suitable priors' specification that could alleviate label-switching and non-identifiability issues affecting finite mixtures. We conduct simulation experiments to show the competitive advantage of our proposal over less specific alternatives. Finally, the proposed model is used to estimate the common bottlenose dolphins' population size at the Tiber River estuary (Mediterranean Sea), using data collected via photo-identification from 2018 to 2020. Results provide novel insights on the population's size and structure, and shed light on some of the ecological processes governing the population dynamics.
翻译:在本研究中,目标是利用来自捕捉-重捕调查的数据估计动物种群的数量。我们利用有关种群结构的先验知识,指定了一种贴合其行为模式的简约有限混合模型。推理是在贝叶斯框架下进行的,我们讨论了合适的先验概率分布的规定,以减轻影响有限混合的标签切换和非唯一性问题。我们进行模拟实验,以显示我们的建议相对于不太特定的替代方案的竞争优势。最后,利用2018年至2020年通过光学识别收集的数据,使用所提出的模型来估计地中海的台伯河口普通斑海豚种群大小。结果提供了有关种群大小和结构的新见解,并阐明了一些影响种群动态的生态过程。