Randomized subspace approximation with "matrix sketching" is an effective approach for constructing approximate partial singular value decompositions (SVDs) of large matrices. The performance of such techniques has been extensively analyzed, and very precise estimates on the distribution of the residual errors have been derived. However, our understanding of the accuracy of the computed singular vectors (measured in terms of the canonical angles between the spaces spanned by the exact and the computed singular vectors, respectively) remains relatively limited. In this work, we present bounds and estimates for canonical angles of randomized subspace approximation that can be computed efficiently either a priori or a posterior. Under moderate oversampling in the randomized SVD, our prior probabilistic bounds are asymptotically tight and can be computed efficiently, while bringing a clear insight into the balance between oversampling and power iterations given a fixed budget on the number of matrix-vector multiplications. The numerical experiments demonstrate the empirical effectiveness of these canonical angle bounds and estimates on different matrices under various algorithmic choices for the randomized SVD.
翻译:使用“ 矩阵草图” 来构建大矩阵的近似部分单值分解( SVDs) 的有效方法。 已经广泛分析了这些技术的性能,并得出了对剩余误差分布的非常精确的估计。 然而,我们对计算单向量的精确度的准确性的理解( 分别以精确度和计算单向量之间的孔径测量)仍然相对有限。 在这项工作中,我们提出了可有效计算前置或远位值的随机子空间近似( SVD) 的圆形角度的界限和估计值。在随机 SVD 的中度过度取样中,我们先前的概率界限是小于随机的,可以有效计算,同时可以清楚地了解过份抽样和电源的平衡,同时对矩阵- 矢量的倍增数有一个固定预算。 数字实验显示了这些随机角度捆绑的实验效果以及根据随机 SVD 的各种算法选择对不同矩阵所作的估计。