Suppose that one can construct a valid $(1-\delta)$-confidence interval (CI) for each of $K$ parameters of potential interest. If a data analyst uses an arbitrary data-dependent criterion to select some subset $\mathcal{S}$ of parameters, then the aforementioned CIs for the selected parameters are no longer valid due to selection bias. We design a new method to adjust the intervals in order to control the false coverage rate (FCR). The main established method is the "BY procedure" by Benjamini and Yekutieli (JASA, 2005). Unfortunately, the BY guarantees require certain restrictions on the the selection criterion and on the dependence between the CIs. We propose a natural and much simpler method which is valid under any dependence structure between the original CIs, and any (unknown) selection criterion, but which only applies to a special, yet broad, class of CIs. Our procedure reports $(1-\delta|\mathcal{S}|/K)$-CIs for the selected parameters, and we prove that it controls the FCR at $\delta$ for confidence intervals that implicitly invert e-values; examples include those constructed via supermartingale methods, or via universal inference, or via Chernoff-style bounds on the moment generating function, among others. The e-BY procedure is admissible, and recovers the BY procedure as a special case via calibration. Our work also has implications for post-selection inference in sequential settings, since it applies at stopping times, to continuously-monitored confidence sequences, and under bandit sampling.


翻译:如果数据分析员使用任意的基于数据的标准来选择某些子集$\mathcal{S}的参数,那么上述选定参数的CI值由于选择偏差而不再有效。我们设计了一种新的方法来调整间隔,以控制虚假的覆盖率。主要既定方法是Benjami和Yekutieli的“BY程序”(2005年,日本空间局),不幸的是,Benjami和Yekutieli的保证要求对选择标准和CIers之间的依赖性作出某些限制。如果数据分析员使用任意的基于数据的标准来选择某些子集$\mathcal{S}S}参数的参数,那么由于选择偏差,上述选定参数的上述CI值不再有效。我们设计了一个新的方法来调整间隔,以控制错误的覆盖率(FCRB程序 ), 主要的既定方法是Benjani和Yekutieli(日本空间局, 2005年) 和Yekutiel CI 的保证要求对选择性标准进行一定的限制。我们提出了一种自然的简单方法,这些方法通过电子格式,这些方法通过电子格式, 也通过直路段进行。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月2日
Arxiv
0+阅读 · 2022年12月30日
Arxiv
0+阅读 · 2022年12月29日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员