We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let $ N>0 $ and $ L\in\mathbb{Z}_{\ge2} $. A multiple packing is a set $\mathcal{C}$ of points in $ \mathbb{R}^n $ such that any point in $ \mathbb{R}^n $ lies in the intersection of at most $ L-1 $ balls of radius $ \sqrt{nN} $ around points in $ \mathcal{C} $. We study the multiple packing problem for both bounded point sets whose points have norm at most $\sqrt{nP}$ for some constant $P>0$ and unbounded point sets whose points are allowed to be anywhere in $ \mathbb{R}^n $. Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive various bounds on the largest possible density of a multiple packing in both bounded and unbounded settings. A related notion called average-radius multiple packing is also studied. Some of our lower bounds exactly pin down the asymptotics of certain ensembles of average-radius list-decodable codes, e.g., (expurgated) Gaussian codes and (expurgated) spherical codes. In particular, our lower bound obtained from spherical codes is the best known lower bound on the optimal multiple packing density and is the first lower bound that approaches the known large $L$ limit under the average-radius notion of multiple packing. To derive these results, we apply tools from high-dimensional geometry and large deviation theory.


翻译:我们在 oclidean 空间中研究高维多重包装问题。 多重包装是球体包装的自然概括化, 定义如下。 我们研究两个受约束点组的多重包装问题, 其点在 $\ mathbb{C} 美元中具有标准值 $ mathbb{R ⁇ n 美元, 任何点在 $\ mathbb{R ⁇ n 美元中都位于半径 $\ sqrt{n} 圆球的交叉点。 多个包装在 $\ mathcal=C} 美元中, 我们研究了两个受约束点组的多个组的多重包装问题, 以 $\ mathb{C} 美元为标准, 以 $\ mathb{R} 美元为标准, 任何点的点都可以在 $\ mathbrealbbbbb} 中处于交叉点。 与 common- demodalate e- demodeal codeal 类似, 在 rodeal demodeal demodeal romode romodeal demode code 中, romodeal 和 romodel romode 也由我们所知道 以各种 以 以 以 以 以 或以 以 以 或以 以 以 以 美元平均 美元为标准为最高级 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Fast Multipole Method for axisymmetric domains
Arxiv
0+阅读 · 2023年1月3日
Arxiv
0+阅读 · 2023年1月3日
Arxiv
0+阅读 · 2023年1月2日
Arxiv
0+阅读 · 2023年1月1日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员