This article introduces adaptive Fourier decomposition (AFD) type methods, emphasizing on those that can be applied to stochastic processes and random fields, mainly including stochastic adaptive Fourier decomposition and stochastic pre-orthogonal adaptive Fourier decomposition. We establish their algorithms based on the covariant function and prove that they enjoy the same convergence rate as the Karhunen-Loeve (KL) decomposition. The AFD type methods are compared with the KL decomposition. In contrast with the latter, the AFD type methods do not need to compute eigenvalues and eigenfunctions of the kernel-integral operator induced by the covariance function, and thus considerably reduce the computation complexity and computer consumes. Various kinds of dictionaries offer AFD flexibility to solve problems of a great variety, including different types of deterministic and stochastic equations. The conducted experiments show, besides the numerical convenience and fast convergence, that the AFD type decompositions outperform the KL type in describing local details, in spite of the proven global optimality of the latter.
翻译:本条介绍了适应性 Fourier 分解(AFD) 类型方法,强调那些可适用于随机过程和字段的方法,主要包括随机适应性适应性 Fourier 分解(Fourier 分解) 和心前随机调整性Fourier 分解(Fourier 分解) 。我们根据共变功能建立了它们的算法,并证明它们享有与Karhunen-Loeve(KL)分解(Karhunen-Loeve(KL) 相同的趋同率。AFD 类型方法与 KL 分解(KL) 方法比较。与后者相比,AFD 类型方法不必计算由共变函数引起的内核整体操作器的精度和元件,从而大大降低计算复杂性和计算机消耗量。各种词典提供了AFDAD灵活性,以解决各种各样的问题,包括不同类型的确定性和分解式方程方程等。除了数字方便性和快速趋同外,所进行的实验表明,尽管已证实全球最佳的后一种方法,但是在描述当地细节时,AFD型解析式解出KL类型。