The stochastic approximation algorithm is a widely used probabilistic method for finding a zero of a vector-valued funtion, when only noisy measurements of the function are available. In the literature to date, one can make a distinction between "synchronous" updating, whereby every component of the current guess is updated at each time, and `"synchronous" updating, whereby only one component is updated. In principle, it is also possible to update, at each time instant, some but not all components of $\theta_t$, which might be termed as "batch asynchronous stochastic approximation" (BASA). Also, one can also make a distinction between using a "local" clock versus a "global" clock. In this paper, we propose a unified formulation of batch asynchronous stochastic approximation (BASA) algorithms, and develop a general methodology for proving that such algorithms converge, irrespective of whether global or local clocks are used. These convergence proofs make use of weaker hypotheses than existing results. For example: existing convergence proofs when a local clock is used require that the measurement noise is an i.i.d sequence. Here, it is assumed that the measurement errors form a martingale difference sequence. Also, all results to date assume that the stochastic step sizes satisfy a probabilistic analog of the Robbins-Monro conditions. We replace this by a purely deterministic condition on the irreducibility of the underlying Markov processes. As specific applications to Reinforcement Learning, we introduce ``batch'' versions of the temporal difference algorithm $TD(0)$ for value iteration, and the $Q$-learning algorithm for finding the optimal action-value function, and also permit the use of local clocks instead of a global clock. In all cases, we establish the convergence of these algorithms, under milder conditions than in the existing literature.


翻译:随机近似算法是一种广泛使用的概率方法, 用于寻找一个矢量估值的调味值的零, 当只有对函数进行杂音测量时, 就会被广泛使用。 在迄今为止的文献中, 人们也可以区分“ 同步” 更新, 即当前猜测的每个组成部分每次更新, 和“ 同步” 更新, 即仅更新一个组件。 原则上, 也可以在每次即时更新一些但并非全部的 $( $) 的成分, 这可能被称为“ 超过同步的 Q- 近似 ” (巴萨 ) 。 另外, 在文献中, 人们还可以区分“ 本地” 时钟和“ 全球” 时钟。 在此文件中, 我们提出一个“ 同步” 同步近似” 的批量配方, 也就是只更新一个组件。 原则上, 不论是否使用了全球或本地时钟, 都会使用这些时钟。 这些最佳证据使得我们使用比现有结果更弱的假设值。 例如: 当本地时, 时间 正在使用固定的轨变变变变变的,, 要求测量 的测序 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
0+阅读 · 2022年9月8日
$H^2$-conformal approximation of Miura surfaces
Arxiv
0+阅读 · 2022年9月7日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员