Consider linear ill-posed problems governed by the system $A_i x = y_i$ for $i =1, \cdots, p$, where each $A_i$ is a bounded linear operator from a Banach space $X$ to a Hilbert space $Y_i$. In case $p$ is huge, solving the problem by an iterative regularization method using the whole information at each iteration step can be very expensive, due to the huge amount of memory and excessive computational load per iteration. To solve such large-scale ill-posed systems efficiently, we develop in this paper a stochastic mirror descent method which uses only a small portion of equations randomly selected at each iteration steps and incorporates convex regularization terms into the algorithm design. Therefore, our method scales very well with the problem size and has the capability of capturing features of sought solutions. The convergence property of the method depends crucially on the choice of step-sizes. We consider various rules for choosing step-sizes and obtain convergence results under {\it a priori} early stopping rules. In particular, by incorporating the spirit of the discrepancy principle we propose a choice rule of step-sizes which can efficiently suppress the oscillations in iterates and reduce the effect of semi-convergence. Furthermore, we establish an order optimal convergence rate result when the sought solution satisfies a benchmark source condition. Various numerical simulations are reported to test the performance of the method.
翻译:考虑由系统 $A_i x = y_i y 美元 = 美元 = 美元 = 美元 = 美元 = 1,\ cddots, p$, 其中每个A_i 美元是一个从Banach 空间随机选定的一小部分线性操作员 $X美元到 Hilbert 空间 $Y 美元 。 如果美元是巨大的,那么,使用每迭代步骤的全部信息的迭代正规化方法来解决问题的费用会非常昂贵,因为每迭代步骤的记忆量巨大,计算负荷过重。为了高效地解决这种大规模错误的系统,我们在本文件中开发一种随机的镜像缩影方法,这种方法只使用每一迭代步骤随机选择的一小部分方程式的线性操作员 美元到Hilbert 空间 $Y_i 美元 美元。 因此,我们的方法与问题大小非常相称,并且有能力捕捉到所寻求的解决办法的特征。 方法的趋同性特性取决于步骤大小的选择。我们考虑各种规则选择步骤大小和在之前取得趋同的结果。 我们考虑在早期停止 规则 早期使用早期的缩缩缩定规则中, 我们用一个精度的精度的精度检验方法 。