In this paper, we study the trace regression when a matrix of parameters B* is estimated via the convex relaxation of a rank-regularized regression or via regularized non-convex optimization. It is known that these estimators satisfy near-optimal error bounds under assumptions on the rank, coherence, and spikiness of B*. We start by introducing a general notion of spikiness for B* that provides a generic recipe to prove the restricted strong convexity of the sampling operator of the trace regression and obtain near-optimal and non-asymptotic error bounds for the estimation error. Similar to the existing literature, these results require the regularization parameter to be above a certain theory-inspired threshold that depends on observation noise that may be unknown in practice. Next, we extend the error bounds to cases where the regularization parameter is chosen via cross-validation. This result is significant in that existing theoretical results on cross-validated estimators (Kale et al., 2011; Kumar et al., 2013; Abou-Moustafa and Szepesvari, 2017) do not apply to our setting since the estimators we study are not known to satisfy their required notion of stability. Finally, using simulations on synthetic and real data, we show that the cross-validated estimator selects a near-optimal penalty parameter and outperforms the theory-inspired approach of selecting the parameter.
翻译:在本文中, 当参数 B* 的矩阵通过一个按级正规回归的分解放松或通过常规的非convex优化来估计参数 B* 的矩阵时, 我们研究跟踪回归。 已知这些估计符根据对B* 的等级、 一致性和 斯皮基的假设, 满足了近于最佳的错误界限。 我们首先对B* 引入一个一般的维基度概念, 提供一种通用的配方, 以证明跟踪回归的抽样操作员的强强强共性, 并获得接近最佳的和非默认的估算错误。 与现有文献类似, 这些结果要求正规化参数高于某个理论启发的阈值, 取决于在实践中可能未知的观测噪音。 下一步, 我们将误差扩大到通过交叉校验选择规范参数的案例中。 其结果是, 现有的关于交叉校验的估算符的理论结果( Kale et al., 2011; Kumar et al.; 2013 ; 我们- 正在选择的参数和 Szepestariva, 201717), 这些结果要求正规参数超过某个理论门槛。 最后, 将显示我们所认识的精度数据不需要的精度研究。