Detecting out-of-distribution (OOD) samples is crucial to the safe deployment of a classifier in the real world. However, deep neural networks are known to be overconfident for abnormal data. Existing works directly design score function by mining the inconsistency from classifier for in-distribution (ID) and OOD. In this paper, we further complement this inconsistency with reconstruction error, based on the assumption that an autoencoder trained on ID data can not reconstruct OOD as well as ID. We propose a novel method, READ (Reconstruction Error Aggregated Detector), to unify inconsistencies from classifier and autoencoder. Specifically, the reconstruction error of raw pixels is transformed to latent space of classifier. We show that the transformed reconstruction error bridges the semantic gap and inherits detection performance from the original. Moreover, we propose an adjustment strategy to alleviate the overconfidence problem of autoencoder according to a fine-grained characterization of OOD data. Under two scenarios of pre-training and retraining, we respectively present two variants of our method, namely READ-MD (Mahalanobis Distance) only based on pre-trained classifier and READ-ED (Euclidean Distance) which retrains the classifier. Our methods do not require access to test time OOD data for fine-tuning hyperparameters. Finally, we demonstrate the effectiveness of the proposed methods through extensive comparisons with state-of-the-art OOD detection algorithms. On a CIFAR-10 pre-trained WideResNet, our method reduces the average FPR@95TPR by up to 9.8% compared with previous state-of-the-art.
翻译:检测分配(OOD)样本对于在现实世界中安全部署一个分类器至关重要。 然而,深神经网络已知对异常数据过于自信。 现有的工程直接设计评分功能, 挖掘分布( ID) 和 OOOD 的分类器不一致之处。 在本文中, 我们进一步将这种不一致与重建错误相补充, 其依据的假设是, 受过ID 数据培训的自动编码器无法重建 OOOD 和 ID 。 我们提出了一种新颖的方法, READ( 重建错误校对综合检测器), 以统一来自分类器和自动编码器的不一致之处。 具体地说, 生像素的重建错误已经转换为隐含的解析器空间。 我们表明,经过改造的重建错误弥合了内部分配( IDA- ) 的校正( Mahalanobis), 仅以我们先前的升级( MAD- ) 之前的升级测试方法为基础, 将我们以往的升级( Mahalanobisbil) 和升级前的升级的升级的升级的升级的 ODADDAD) 升级前的升级方法降低了我们的标准。 我们的升级前的升级前的升级前的升级的升级方法。