Scene graph generation aims to construct a semantic graph structure from an image such that its nodes and edges respectively represent objects and their relationships. One of the major challenges for the task lies in the presence of distracting objects and relationships in images; contextual reasoning is strongly distracted by irrelevant objects or backgrounds and, more importantly, a vast number of irrelevant candidate relations. To tackle the issue, we propose the Selective Quad Attention Network (SQUAT) that learns to select relevant object pairs and disambiguate them via diverse contextual interactions. SQUAT consists of two main components: edge selection and quad attention. The edge selection module selects relevant object pairs, i.e., edges in the scene graph, which helps contextual reasoning, and the quad attention module then updates the edge features using both edge-to-node and edge-to-edge cross-attentions to capture contextual information between objects and object pairs. Experiments demonstrate the strong performance and robustness of SQUAT, achieving the state of the art on the Visual Genome and Open Images v6 benchmarks.


翻译:场景图生成的目标是从图像中构建语义图结构,使其节点和边分别表示对象及其关系。这项任务的一个主要挑战在于图像中存在分散注意力的干扰对象和关系。背景或大量无关候选关系强烈干扰了语境推理。为应对这一问题,我们提出了选择性四重注意力网络(SQUAT),学习选择相关的对象组和通过多样化的上下文交互消除歧义。SQUAT由两个主要组成部分组成:边选择和四重注意力。边选择模块选择相关的对象组,即场景图中的边,这有助于语境推理。四重注意力模块使用边到节点和边到边的交叉注意力更新边缘特征,捕捉对象和对象组之间的上下文信息。实验表明SQUAT具有强大的性能和鲁棒性,在Visual Genome和Open Images v6基准测试中均达到了最先进水平。

0
下载
关闭预览

相关内容

【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
25+阅读 · 2022年1月3日
VIP会员
相关VIP内容
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员