Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities' relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.
翻译:多段落推理对于开放式回答问题( OpenQA) 来说必不可少,因为当前 OpenQA 系统中的开放式回答( OpenQA) 得到的关注较少。 在这项工作中,我们建议建立一个知识强化的图形神经网络( KGNN), 与实体一起对多个段落进行推理。 为了明确捕捉实体的关联性, KGNN 使用知识图形中的关联性事实来构建实体图形。 实验结果显示, KGNN 在分散和完整的维基设置方面都优于HotpotQA 数据集的基线方法。 我们的进一步分析显示, KGNN 是有效和强大的, 其检索的段落更多 。