Prevalent predictive coding-based video compression methods rely on a heavy encoder to reduce the temporal redundancy, which makes it challenging to deploy them on resource-constrained devices. Meanwhile, as early as the 1970s, distributed source coding theory has indicated that independent encoding and joint decoding with side information (SI) can achieve high-efficient compression of correlated sources. This has inspired a distributed coding architecture aiming at reducing the encoding complexity. However, traditional distributed coding methods suffer from a substantial performance gap to predictive coding ones. Inspired by the great success of learning-based compression, we propose the first end-to-end distributed deep video compression framework to improve the rate-distortion performance. A key ingredient is an effective SI generation module at the decoder, which helps to effectively exploit inter-frame correlations without computation-intensive encoder-side motion estimation and compensation. Experiments show that our method significantly outperforms conventional distributed video coding and H.264. Meanwhile, it enjoys 6-7x encoding speedup against DVC [1] with comparable compression performance. Code is released at https://github.com/Xinjie-Q/Distributed-DVC.
翻译:广泛采用预测编码的视频压缩方法依赖于重编码器以减少时间冗余,这使得在资源受限的设备上部署它们变得具有挑战性。同时,早在1970年代,分布式源编码理论指出,编码和解码具有附带信息的相关源可以实现高效的压缩。这激发了一种旨在减少编码复杂度的分布式编码架构。然而,传统的分布式编码方法与预测编码方法之间存在着显著的性能差距。受到基于学习的数据压缩方法的巨大成功的鼓舞,我们提出了第一个端到端的分布式深度视频压缩框架,以提高比特率与失真性能。关键的组成部分是解码器中一个有效的附带信息生成模块,它有助于在没有计算密集型的编码器端运动估计和补偿的情况下有效地利用帧间的相关性。实验证明,我们的方法明显优于传统的分布式视频编码和H.264。同时,它在具有可比较的压缩性能的同时实现了6-7倍的编码速度提升。代码已发布在 https://github.com/Xinjie-Q/Distributed-DVC上。