This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
翻译:本文显示, 掩码自动解码器( MAE) 是可缩放的计算机视觉自我监督学习者 。 我们的 MAE 方法很简单: 我们遮盖输入图像的随机补丁, 重建缺失的像素。 它基于两个核心设计 。 首先, 我们开发一个不对称的编码器结构, 其编码器仅对可见的补丁子子子组( 没有掩码符号 ) 操作, 以及一个轻量级解码器, 从潜显示和掩码符号中重建原始图像 。 其次, 我们发现, 遮盖大量输入图像( 例如, 75% ), 产生一种非边际和有意义的自我监督的自我监督任务。 合并这两个设计使我们能够高效和有效地培训大型模型: 我们加速培训( 3x 以上), 并改进准确性。 我们的可缩放法允许学习高能力模型, 这些模型非常普及 : 例如, 香草 Vit- Huge 模型在只使用图像Net-1K 的数据的方法中达到最佳的准确性( 87.8 % ) 。 在下游任务中转换中显示有希望的操作前 。