End-to-end optimized neural image compression (NIC) has obtained superior lossy compression performance recently. In this paper, we consider the problem of rate-distortion (R-D) characteristic analysis and modeling for NIC. We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep networks. Thus arbitrary bit-rate points could be elegantly realized by leveraging such model via a single trained network. We propose a plugin-in module to learn the relationship between the target bit-rate and the binary representation for the latent variable of auto-encoder. The proposed scheme resolves the problem of training distinct models to reach different points in the R-D space. Furthermore, we model the rate and distortion characteristic of NIC as a function of the coding parameter $\lambda$ respectively. Our experiments show our proposed method is easy to adopt and realizes state-of-the-art continuous bit-rate coding performance, which implies that our approach would benefit the practical deployment of NIC.
翻译:端到端优化神经图像压缩(NIC)最近取得了超强的损耗压缩性能。 在本文中,我们考虑了率扭曲(R-D)特性分析和NIC建模的问题。 我们努力制定基本的数学函数来描述NIC使用深层网络的R-D行为。 因此,通过单一的训练有素的网络来利用这种模型可以高雅地实现武断的位速率点。 我们提议了一个插件模块来了解目标位速率和自动编码潜在变量的二进制表示之间的关系。 拟议的计划解决了培训不同模型以达到R- D空间不同点的问题。 此外,我们将NIC的速率和扭曲特性分别作为编码参数 $\ lambda$ 的函数进行建模。 我们的实验表明我们拟议的方法很容易被采纳并实现最新的连续的位速率编码性能, 这意味着我们的方法将有利于NIC的实际部署。