We describe and analyze algorithms for shape-constrained symbolic regression, which allows the inclusion of prior knowledge about the shape of the regression function. This is relevant in many areas of engineering -- in particular whenever a data-driven model obtained from measurements must have certain properties (e.g. positivity, monotonicity or convexity/concavity). We implement shape constraints using a soft-penalty approach which uses multi-objective algorithms to minimize constraint violations and training error. We use the non-dominated sorting genetic algorithm (NSGA-II) as well as the multi-objective evolutionary algorithm based on decomposition (MOEA/D). We use a set of models from physics textbooks to test the algorithms and compare against earlier results with single-objective algorithms. The results show that all algorithms are able to find models which conform to all shape constraints. Using shape constraints helps to improve extrapolation behavior of the models.
翻译:我们描述和分析受形状限制的象征性回归的算法,这种算法允许包含先前对回归函数形状的了解。这在许多工程领域都具有相关性,特别是当从测量中获得的数据驱动模型必须具有某些属性(例如:阳性、单调或共和/共和性)时。我们采用软性控制法来实施形状限制,这种方法使用多目标算法来尽量减少限制违反和培训错误。我们使用非主要分类遗传算法(NSGA-II)以及基于分解的多目标进化算法(MOEA/D)。我们使用一套物理教科书模型来测试算法,用单一目标算法对照早期的结果。结果显示,所有算法都能找到符合所有形状限制的模型。使用形状限制有助于改进模型的外推法行为。