Extracting temporal relations (before, after, overlapping, etc.) is a key aspect of understanding events described in natural language. We argue that this task would gain from the availability of a resource that provides prior knowledge in the form of the temporal order that events usually follow. This paper develops such a resource -- a probabilistic knowledge base acquired in the news domain -- by extracting temporal relations between events from the New York Times (NYT) articles over a 20-year span (1987--2007). We show that existing temporal extraction systems can be improved via this resource. As a byproduct, we also show that interesting statistics can be retrieved from this resource, which can potentially benefit other time-aware tasks. The proposed system and resource are both publicly available.
翻译:提取时间关系(之前、之后、重叠等)是理解自然语言所描述事件的一个关键方面。 我们争辩说,这一任务将得益于以事件通常随时间顺序提供先前知识的资源的提供。本文通过在20年(1987-2007年)期间从《纽约时报》文章中提取事件之间的时间关系(1987-2007年),开发出这种资源 -- -- 一个在新闻领域获得的概率性知识库。我们表明,现有的时间提取系统可以通过这一资源加以改进。作为一个副产品,我们还表明,可以从这一资源中提取有趣的统计数据,这有可能有益于其他时间认知任务。拟议的系统和资源可以公开使用。