Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whole source image with recurrent convolutional neural network (RCNN). Then several stacked deconvolutional layers are adopted to get the multi-scale feature representation and obtain a series of saliency maps. Finally, we investigate a fusion convolution module (FCM) to build a final pixel level saliency map. The proposed model is extensively evaluated on four salient object detection benchmark datasets. Results show that our deep model significantly outperforms other 12 state-of-the-art approaches.
翻译:显性天体探测是一个根本性问题,在计算机视觉中受到了很多关注。 最近深层次的学习模型成为图像特征提取的有力工具。 在本文中,我们提议建立一个用于显性天体探测的多尺度深神经网络(MSDNN) 。 拟议的模型首先提取全球高层次特征和背景信息, 在整个源图像中, 与循环的神经网络( RCNNN) 相接 。 然后, 采用了几个堆叠的分流层, 以获得多尺度的特征描述, 并获得一系列突出的地图 。 最后, 我们调查一个聚合模块( FCM) 以构建最后的像素水平显性地图 。 拟议的模型在四个突出天体探测基准数据集上进行了广泛评估 。 结果显示, 我们深层的模型大大优于其他12个状态的模型 。