Feature maps in deep neural network generally contain different semantics. Existing methods often omit their characteristics that may lead to sub-optimal results. In this paper, we propose a novel end-to-end deep saliency network which could effectively utilize multi-scale feature maps according to their characteristics. Shallow layers often contain more local information, and deep layers have advantages in global semantics. Therefore, the network generates elaborate saliency maps by enhancing local and global information of feature maps in different layers. On one hand, local information of shallow layers is enhanced by a recurrent structure which shared convolution kernel at different time steps. On the other hand, global information of deep layers is utilized by a self-attention module, which generates different attention weights for salient objects and backgrounds thus achieve better performance. Experimental results on four widely used datasets demonstrate that our method has advantages in performance over existing algorithms.
翻译:深神经网络中的地貌图通常包含不同的语义学。 现有方法往往省略可能导致亚最佳结果的特征。 在本文中,我们建议建立一个新的端到端深显性网络,根据它们的特征有效地使用多尺度的地貌图。 浅浅层通常包含更多的当地信息,深层在全球语义学中具有优势。 因此,通过加强不同层次地貌图的地方和全球信息,这个网络生成了复杂的突出性图。 一方面,浅层的当地信息通过一个经常性结构得到加强,该结构在不同时间步骤中共享共聚内核。 另一方面,一个自我注意模块利用了深层的全球信息,该模块对突出对象和背景产生不同的关注分量,从而取得更好的性能。 四个广泛使用的数据集的实验结果表明,我们的方法比现有算法有优势。