We'd like to share a simple tweak of Single Shot Multibox Detector (SSD) family of detectors, which is effective in reducing model size while maintaining the same quality. We share box predictors across all scales, and replace convolution between scales with max pooling. This has two advantages over vanilla SSD: (1) it avoids score miscalibration across scales; (2) the shared predictor sees the training data over all scales. Since we reduce the number of predictors to one, and trim all convolutions between them, model size is significantly smaller. We empirically show that these changes do not hurt model quality compared to vanilla SSD.
翻译:我们希望共享一个简单的单射多箱探测器(SSD)系列探测器, 它在降低模型大小的同时保持相同质量。 我们共享所有比例尺的盒式预报器, 并用最大集合来取代天平之间的混杂。 这比香草 SSD 具有两个优势:(1) 它避免了各比例尺的分数差错;(2) 共享预测器看到所有比例尺的培训数据。 由于我们将预测器的数量减少到一个, 并缩小了它们之间的所有变化, 模型大小要小得多。 我们从经验上表明, 这些变化与香草 SSD相比不会损害模型质量 。