Molecular crystal structure prediction (CSP) seeks the most stable periodic structure given a chemical composition of a molecule and pressure-temperature conditions. Modern CSP solvers use global optimization methods to search for structures with minimal free energy within a complex energy landscape induced by intermolecular potentials. A major caveat of these methods is that initial configurations are random, making thus the search susceptible to the convergence at local minima. Providing initial configurations that are densely packed with respect to the geometric representation of a molecule can significantly accelerate CSP. Motivated by these observations we define a class of periodic packings restricted to crystallographic symmetry groups (CSG) and design a search method for densest CSG packings in an information geometric framework. Since the CSG induce a toroidal topology on the configuration space, a non-euclidean trust region method is performed on a statistical manifold consisting of probability distributions defined on an $n$-dimensional flat unit torus by extending the multivariate von Mises distribution. By introducing an adaptive quantile reformulation of the fitness function into the optimization schedule we provide the algorithm a geometric characterization through local dual geodesic flows. Moreover, we examine the geometry of the adaptive selection quantile defined trust region and show that the algorithm performs a maximization of stochastic dependence among elements of the extended multivariate von Mises distributed random vector. We experimentally evaluate its behavior and performance on various densest packings of convex polygons in $2$-dimensional CSG for which optimal solutions are known.
翻译:分子晶体结构预测( CSP) 寻求最稳定的周期性结构 。 基于分子和压力温度条件的化学构成, 现代 CSP 解答器使用全球优化方法, 在由间分子潜力引发的复杂能源环境中寻找最小自由能量的结构 。 这些方法的主要告诫是初始配置是随机的, 从而使得搜索容易在本地微型中出现趋同 。 提供在分子的几何表达面上密集包装的初始配置可以大大加速 CSP 。 基于这些观察, 我们定义了限于晶体对称组( CSG) 的定期包装类别, 并设计了在信息几何框架内为最稠密的 CSG 包装设计一种搜索方法。 由于CSG 在配置空间上引入了一种对机器人表面表面的表面表面学, 一种非欧元信任区域由以美元为单位的概率分布构成的概率分布构成, 通过扩大多变量流分配, 我们通过在优化表中引入一个适应性调整的健身功能结构, 我们通过对已知的地理轨迹的精确度对数值进行定量分析 。