The link prediction task on knowledge graphs without explicit negative triples in the training data motivates the usage of rank-based metrics. Here, we review existing rank-based metrics and propose desiderata for improved metrics to address lack of interpretability and comparability of existing metrics to datasets of different sizes and properties. We introduce a simple theoretical framework for rank-based metrics upon which we investigate two avenues for improvements to existing metrics via alternative aggregation functions and concepts from probability theory. We finally propose several new rank-based metrics that are more easily interpreted and compared accompanied by a demonstration of their usage in a benchmarking of knowledge graph embedding models.
翻译:在培训数据中,在没有明确负三重数据情况下,知识图表的链接预测任务促使使用按级衡量标准。在这里,我们审查现有的按级衡量标准,并提出改进衡量标准的方法,以解决现有衡量标准与不同大小和属性数据集缺乏解释性和可比性的问题。我们为按级衡量标准引入了一个简单的理论框架,据此我们调查通过替代汇总功能和概率理论概念改进现有衡量标准的两个途径。我们最后提出了若干新的按级衡量标准,这些标准更便于解释,并辅之以在知识图表嵌入模型基准中显示其使用。