We present a general approach for controlling robotic systems that make and break contact with their environments. Contact-implicit model predictive control (CI-MPC) generalizes linear MPC to contact-rich settings by utilizing a bi-level planning formulation with lower-level contact dynamics formulated as time-varying linear complementarity problems (LCPs) computed using strategic Taylor approximations about a reference trajectory. These dynamics enable the upper-level planning problem to reason about contact timing and forces, and generate entirely new contact-mode sequences online. To achieve reliable and fast numerical convergence, we devise a structure-exploiting interior-point solver for these LCP contact dynamics and a custom trajectory optimizer for the tracking problem. We demonstrate real-time solution rates for CI-MPC and the ability to generate and track non-periodic behaviours in hardware experiments on a quadrupedal robot. We also show that the controller is robust to model mismatch and can respond to disturbances by discovering and exploiting new contact modes across a variety of robotic systems in simulation, including a pushbot, planar hopper, planar quadruped, and planar biped.
翻译:我们提出了一个控制机器人系统的一般方法,这种系统可以与环境发生接触和中断接触; 接触隐蔽模型预测控制(CI-MPC)将线性电磁电动控制(CI-MPC)一般化为线性电动控制(MPC)与接触丰富的环境,方法是利用一种双级规划方法,利用时间变化线性线性互补问题(LCPs),用泰勒战略近似法计算参考轨迹。这些动态使得高层规划问题能够解释接触时间和力量,并产生全新的在线接触模式序列。 为了实现可靠和快速的数字趋同,我们为LCP接触动态设计了一种结构开发的内部点解决方案,并为跟踪问题设计了一个定制轨迹优化器。我们展示了CI-MPC实时解决方案率和在四重机器人硬件实验中生成和跟踪非周期性行为的能力。 我们还表明,控制器有能力模拟不匹配,并能够通过在模拟中发现和利用各种机器人系统的新接触模式来应对干扰,包括推式、平式皮革、平板四重和平板双重的机器人。