Haptic upper limb exoskeletons are robots that assist human operators during task execution while having the ability to render virtual or remote environments. Therefore, the stability of such robots in physical human-robot-environment interaction must be guaranteed, in addition to performing well during task execution. Having a wide range of Z-width, which shows the region of passively renderable impedance by a haptic display, is also important to render a wide range of virtual environments. To address these issues, in this study, subsystem-based adaptive impedance control is designed for having a stable human-robot-environment interaction of 7 degrees of freedom haptic exoskeleton. The presented control decomposes the entire system into subsystems and designs the controller at the subsystem level. The stability of the controller in the presence of contact with the virtual environment and human arm force is proved by employing the virtual stability concept. Additionally, the Z-width of the 7-DoF haptic exoskeleton is drawn using experimental data and improved using varying virtual mass element for the virtual environment. Finally, experimental results are provided to demonstrate the perfect performance of the proposed controller in accomplishing the predefined task.
翻译:在任务执行期间,Haptic上肢外骨干是协助人类操作者进行任务执行的机器人,同时能够创造虚拟或远程环境。因此,除了在任务执行期间运行良好外,还必须确保这些机器人在人体-机器人-环境相互作用中的稳定。拥有广泛的Z-width,显示与虚拟环境和人类臂力发生接触时的稳定性,用虚拟稳定概念证明了控制者与虚拟环境和人类臂力发生接触时的稳定性。此外,为解决这些问题,还必须建立广泛的虚拟环境。为了解决这些问题,在本研究中,以子系统为基础的适应性阻力控制是设计为以下目的设计的:在7度的自由机能外骨骼之间有一个稳定的人类-机器人-机器人-环境相互作用。提出的控制将整个系统分解为子系统,并在子系统一级设计控制器。在与虚拟环境和人类臂力发生接触时,控制器的稳定性得到证明。此外,7-DoF型机能外骨骼的Zwid是利用实验数据绘制的,并在虚拟环境中使用不同的虚拟质量元素加以改进。最后,提供了实验结果,以显示拟议的控制器前的完美性能。</s>