Probing the computational underpinnings of subjective experience, or qualia, remains a central challenge in cognitive neuroscience. This project tackles this question by performing a rigorous comparison of the representational geometry of color qualia between state-of-the-art AI models and the human brain. Using a unique fMRI dataset with a "no-report" paradigm, we use Representational Similarity Analysis (RSA) to compare diverse vision models against neural activity under two conditions: pure perception ("no-report") and task-modulated perception ("report"). Our analysis yields three principal findings. First, nearly all models align better with neural representations of pure perception, suggesting that the cognitive processes involved in task execution are not captured by current feedforward architectures. Second, our analysis reveals a critical interaction between training paradigm and architecture, challenging the simple assumption that Contrastive Language-Image Pre-training(CLIP) training universally improves neural plausibility. In our direct comparison, this multi-modal training method enhanced brain-alignment for a vision transformer(ViT), yet had the opposite effect on a ConvNet. Our work contributes a new benchmark task for color qualia to the field, packaged in a Brain-Score compatible format. This benchmark reveals a fundamental divergence in the inductive biases of artificial and biological vision systems, offering clear guidance for developing more neurally plausible models.
翻译:暂无翻译