We study the tractability of the maximum independent set problem from the viewpoint of graph width parameters, with the goal of defining a width parameter that is as general as possible and allows to solve independent set in polynomial-time on graphs where the parameter is bounded. We introduce two new graph width parameters: one-sided maximum induced matching-width (o-mim-width) and neighbor-depth. O-mim-width is a graph parameter that is more general than the known parameters mim-width and tree-independence number, and we show that independent set and feedback vertex set can be solved in polynomial-time given a decomposition with bounded o-mim-width. O-mim-width is the first width parameter that gives a common generalization of chordal graphs and graphs of bounded clique-width in terms of tractability of these problems. The parameter o-mim-width, as well as the related parameters mim-width and sim-width, have the limitation that no algorithms are known to compute bounded-width decompositions in polynomial-time. To partially resolve this limitation, we introduce the parameter neighbor-depth. We show that given a graph of neighbor-depth $k$, independent set can be solved in time $n^{O(k)}$ even without knowing a corresponding decomposition. We also show that neighbor-depth is bounded by a polylogarithmic function on the number of vertices on large classes of graphs, including graphs of bounded o-mim-width, and more generally graphs of bounded sim-width, giving a quasipolynomial-time algorithm for independent set on these graph classes. This resolves an open problem asked by Kang, Kwon, Str{\o}mme, and Telle [TCS 2017].


翻译:我们从图形宽度参数的角度研究最大独立设置问题的可感性。 我们的目标是从图形宽度参数的角度来研究最大独立设置问题的可感性。 我们的目标是定义一个尽可能普遍的宽度参数, 并允许在参数受约束的图形上解压缩多角度时独立设置。 我们引入两个新的图形宽度参数: 单向最大诱导匹配宽度( o- mim- width) 和邻居深度。 O- mim- width 是比已知参数 mim- width 和树独立数更普通的图形参数。 我们显示, 独立的数据集和反馈顶端的顶端参数可以在多层次的多层次中解析。 O- mim-wid是第一个宽度参数, 在这些问题的可感光度方面, 直径直径的直径直径直径的直径直径直位值上, 直径直径直流的直径直径直径直径直径直径直径直的直径直位数。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月12日
Arxiv
0+阅读 · 2023年4月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员