Our objective is to calculate the derivatives of data corrupted by noise. This is a challenging task as even small amounts of noise can result in significant errors in the computation. This is mainly due to the randomness of the noise, which can result in high-frequency fluctuations. To overcome this challenge, we suggest an approach that involves approximating the data by eliminating high-frequency terms from the Fourier expansion of the given data with respect to the polynomial-exponential basis. This truncation method helps to regularize the issue, while the use of the polynomial-exponential basis ensures accuracy in the computation. We demonstrate the effectiveness of our approach through numerical examples in one and two dimensions.


翻译:我们的目标是计算受噪声干扰的数据的导数。这是一个具有挑战性的任务,因为即使是少量的噪声也可能导致计算误差显著增加。这主要是由于噪声的随机性,可能导致高频波动。为了克服这个挑战,我们建议一种方法,即通过使用多项式指数基础从给定数据的傅里叶展开中消除高频项来逼近数据。这种截断方法有助于规范问题,而多项式指数基础的使用确保了计算的准确性。我们通过一维和二维的数值示例展示了我们方法的有效性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
28+阅读 · 2020年10月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员