Mathematics is a limited component of solutions to real-world problems, as it expresses only what is expected to be true if all our assumptions are correct, including implicit assumptions that are omnipresent and often incorrect. Statistical methods are rife with implicit assumptions whose violation can be life-threatening when results from them are used to set policy. Among them are that there is human equipoise or unbiasedness in data generation, management, analysis, and reporting. These assumptions correspond to levels of cooperation, competence, neutrality, and integrity that are absent more often than we would like to believe. Given this harsh reality, we should ask what meaning, if any, we can assign to the P-values, 'statistical significance' declarations, 'confidence' intervals, and posterior probabilities that are used to decide what and how to present (or spin) discussions of analyzed data. By themselves, P-values and CI do not test any hypothesis, nor do they measure the significance of results or the confidence we should have in them. The sense otherwise is an ongoing cultural error perpetuated by large segments of the statistical and research community via misleading terminology. So-called 'inferential' statistics can only become contextually interpretable when derived explicitly from causal stories about the real data generator (such as randomization), and can only become reliable when those stories are based on valid and public documentation of the physical mechanisms that generated the data. Absent these assurances, traditional interpretations of statistical results become pernicious fictions that need to be replaced by far more circumspect descriptions of data and model relations.


翻译:---- 数学是解决现实问题的有限部分,因为它仅表达了如果我们所有的假设都正确(包括无处不在且经常不正确的隐含假设),则预期成立的内容。统计方法中包含着大量的隐含假设,当这些方法的结果被用于制定政策时,假设的违反可能导致危及生命。其中一些假设是数据产生、管理、分析和报告中存在人性均衡或无偏的假设,这些假设对应着缺席更为常见的协作、能力、客观性和诚实。考虑到这种残酷现实,我们应该问,我们可以给予 P 值、‘统计显著性’声明、‘置信’区间和后验概率以何种意义,如果有的话,这些量被用于决定分析数据的内容和方式以及如何呈现(或解读)这些结果。单独看,P 值和置信区间不会测试任何假设,也不会测量结果的显著性或我们对其的置信度。相反,这种感觉是一种持续的文化误区,通过误导性术语被广大的统计和研究社区维持着。所谓“推断式”统计只有在明确从真实数据生成器(如随机化)中派生的有关因果故事时才能在上下文中被解释,并且只有在这些故事基于数据生成的物理机制的有效和公开的文档时才能变得可靠。如果缺乏这些保证,统计结果的传统解释就会变成有害的虚构,需要用更为慎重的数据和模型关系描述来替代。

0
下载
关闭预览

相关内容

【2022新书】Python数据分析第三版,579页pdf
专知会员服务
244+阅读 · 2022年8月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月25日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员