We initiate the study of numerical linear algebra in the sliding window model, where only the most recent $W$ updates in a stream form the underlying data set. We first introduce a unified row-sampling based framework that gives randomized algorithms for spectral approximation, low-rank approximation/projection-cost preservation, and $\ell_1$-subspace embeddings in the sliding window model, which often use nearly optimal space and achieve nearly input sparsity runtime. Our algorithms are based on "reverse online" versions of offline sampling distributions such as (ridge) leverage scores, $\ell_1$ sensitivities, and Lewis weights to quantify both the importance and the recency of a row. Our row-sampling framework rather surprisingly implies connections to the well-studied online model; our structural results also give the first sample optimal (up to lower order terms) online algorithm for low-rank approximation/projection-cost preservation. Using this powerful primitive, we give online algorithms for column/row subset selection and principal component analysis that resolves the main open question of Bhaskara et. al.,(FOCS 2019). We also give the first online algorithm for $\ell_1$-subspace embeddings. We further formalize the connection between the online model and the sliding window model by introducing an additional unified framework for deterministic algorithms using a merge and reduce paradigm and the concept of online coresets. Our sampling based algorithms in the row-arrival online model yield online coresets, giving deterministic algorithms for spectral approximation, low-rank approximation/projection-cost preservation, and $\ell_1$-subspace embeddings in the sliding window model that use nearly optimal space.
翻译:我们在滑动窗口模型中开创了数值线性代数的研究,其中只有最近的 $W$ 次更新形成了基础数据集。我们首先介绍了一个基于行采样的统一框架,给出了滑动窗口模型中的谱近似、低秩近似/投影成本保持、$\ell_1$-子空间嵌入的随机化算法,这些算法通常使用几乎最优的空间和几乎输入稀疏的运行时间。我们的算法基于离线采样分布的“反向在线”版本,如(Ridge)Leverage分数,$\ell_1$灵敏度 和 Lewis权重,用于量化行的重要性和新近性。我们的行采样框架令人惊讶地暗示了在线模型的联系; 我们的结构结果还提供了首个样本最优(直到低阶项)的低秩近似/投影成本保持在线算法。利用这个强大的原语,我们给出了列/行子集选择和主成分分析的在线算法,解决了 Bhaskara et. al. (FOCS 2019) 的主要开放问题。我们还介绍了在线模型与滑动窗口模型之间的联系,通过引入合并和归约范式以及在线核心集的概念,提出了另一个确定性算法的统一框架。我们在行到达在线模型中的采样算法提供了在线核心集,从而给出了滑动窗口模型中的谱近似、低秩近似/投影成本保持和$\ell_1$-子空间嵌入的确定算法,这些算法使用几乎最优的空间。