Assuming the Unique Games Conjecture (UGC), the best approximation ratio that can be obtained in polynomial time for the MAX CUT problem is $\alpha_{\text{CUT}}\simeq 0.87856$, obtained by the celebrated SDP-based approximation algorithm of Goemans and Williamson. The currently best approximation algorithm for MAX DI-CUT, i.e., the MAX CUT problem in directed graphs, achieves a ratio of about $0.87401$, leaving open the question whether MAX DI-CUT can be approximated as well as MAX CUT. We obtain a slightly improved algorithm for MAX DI-CUT and a new UGC-hardness result for it, showing that $0.87446\le \alpha_{\text{DI-CUT}}\le 0.87461$, where $\alpha_{\text{DI-CUT}}$ is the best approximation ratio that can be obtained in polynomial time for MAX DI-CUT under UGC. The new upper bound separates MAX DI-CUT from MAX CUT, resolving a question raised by Feige and Goemans. A natural generalization of MAX DI-CUT is the MAX 2-AND problem in which each constraint is of the form $z_1\land z_2$, where $z_1$ and $z_2$ are literals, i.e., variables or their negations (In MAX DI-CUT each constraint is of the form $\bar{x}_1\land x_2$, where $x_1$ and $x_2$ are variables.) Austrin separated MAX 2-AND from MAX CUT by showing that $\alpha_{\text{2AND}} < 0.87435$ and conjectured that MAX 2-AND and MAX DI-CUT have the same approximation ratio. Our new lower bound on MAX DI-CUT refutes this conjecture, completing the separation of the three problems MAX 2-AND, MAX DI-CUT and MAX CUT. We also obtain a new lower bound for MAX 2-AND, showing that $0.87414\le \alpha_{\text{2AND}}\le 0.87435$. Our upper bound on MAX DI-CUT is achieved via a simple, analytical proof. The lower bounds on MAX DI-CUT and MAX 2-AND (the new approximation algorithms) use experimentally-discovered distributions of rounding functions which are then verified via computer-assisted proofs.
翻译:假设唯一游戏猜想(Ugc),在多项式时间内能够为MAX CUT问题获得的最佳逼近比率为$ \alpha_{\text {CUT}} \simeq0.87856$,由Goemans和Williamson的SDP-based逼近算法获得。目前最好的MAX DI-CUT逼近算法,即有向图中MAX CUT问题的最佳逼近算法,达到了约$0.87401$的比率,这引发了一个问题,即MAX DI-CUT是否能够像MAX CUT一样近似。我们为MAX DI-CUT获得了一个稍微改进的算法和一个新的UGC难度结果,表明$0.87446 \leq \alpha_{\text {DI-CUT}} \leq0.87461$,其中$\alpha_{\text {DI-CUT}}$是在UGC下为MAX DI-CUT能够在多项式时间内获得的最佳逼近比率。新的上界将MAX DI-CUT与MAX CUT分离,并回答了Feige和Goemans提出的一个问题。MAX DI-CUT的一个自然推广是MAX 2-AND问题,其中每个约束条件的形式为$z_1 \land z_2$,其中$z_1$和$z_2$是文字,即变量或它们的否定(在MAX DI-CUT中,每个约束条件的形式为$\bar{x}_1 \land x_2$,其中$x_1$ 和$x_2$是变量。Austrin通过展示$\alpha_{\text {2AND}} $ < 0.87435将MAX 2-AND与MAX CUT分离,并猜测MAX 2-AND和MAX DI-CUT具有相同的逼近比率。我们对MAX DI-CUT的新下界证明了这一猜测是不成立的,从而完全分离了MAX 2-AND、MAX DI-CUT和MAX CUT三个问题。我们还为MAX 2-AND获得了一个新的下界,表明$0.87414\leq \alpha_{\text {2AND}}\leq0.87435$。我们对MAX DI-CUT的上界是通过一个简单的解析证明得到的。MAX DI-CUT和MAX 2-AND的下界(新的逼近算法)采用了经过实验发现的四舍五入函数分布,然后通过计算机辅助证明进行验证。